-->

Type something and hit enter

On
advertise here
Fungsi komposisi Dan Komposisi Fungsi pada artikel ini yang akan kita pelajari adalah tentang fungsi komposisi dan Komposisi Fungsi. Materi ini termasuk kedalam salah satu pokok bahasan yang ada di dalam materi pelajaran matematika SMA. Ada baiknya sebelum kita mempelajari materi ini kita terlebih dahulu memahami teori tentang, konsep dan jenis himpunan matematika.  

Kumpulan Soal dan Pembahasan SD,SMP,SMA
 
Fungsi atau pemetaan termasuk ke dalam relasi karena didalam sebuah fungsi dari himpunan A ke himpunan B terdapat relasi khusus yang memasangkan tiap-tiap anggota yang ada pada himpunan A dengan tiap-tiap anggota pada himpunan B. untuk bisa menyelesaikan soal-soal mengenai fungsi komposisi dan fungsi invers tentu kita harus memahami dengan baik kkonsep ataupun prinsip dasar fungsi kmposisi dan fungsi invers.
Pengertian fungsi komposisi dan Komposisi fungsi
A.    Fungsi komposisi
Dari dua jeis fungsi f (x) dan g (x) kita dapat membentuk sebuah fungsi baru dengan sisitem operasi komposisi. Operasi komposisi sering dilambangkan dengan “o” (komposisi?bundaran). fungsi baru yang dapak kita bentuk dari fungsi f (x) dan g (x)  adalah  
(f o g) (x)  artinya g dimasukan ke f
(g o f) (x)  artinya f dimasukan ke g
Contoh
1.      Diketahu f(x) = 2x-5 dan g(x) = x2 + 5x -1
Tentukanlah (f o g) (x) dan (g o f) (x)
Jawab
(f o g) (x)=
(f o g) (x) = 2(x2 + 5x -1)-5
(f o g) (x) = 2x2 + 10x -2-5
(f o g) (x) = 2x2 + 10x -17
(g o f) (x) =
(g o f) (x) = (2x-5)2 + 5(2x-5) -1
(g o f) (x) = (4x2 - 20x + 25) + 10x-25) -1
(g o f) (x) = 4x2 - 10x -1
2.      Diketahui f (x) = 2x-3 dan g (x) = x2 + 2x -3
Tentukanlah nilai dari (f o g) (2)
Jawab
(f o g) (2)=
(f o g) (x) = 2(x2 + 2x -3)-3
(f o g) (x) = 2x2 + 4x -6-3
(f o g) (x) = 2x2 + 4x -9
(f o g) (2) = 2(2)2 + 4(2) -9
(f o g) (2) = 2(4) + 8 -9
(f o g) (2) = 8+ 8 -9
(f o g) (2) = 7
Sifat-sifat fungsi komposisi
Fungsi komposisi memiliki bebrapa sifat, diantaranya :
Tidak komutatif
(f o g) (x)  tidak sama dengan (g o f) (x)  
Asosiatif
(f o (g o h)) (x) = ((f o g) o h) (x)
Fungsi identitas
(f o I ) (x) = (I o f) (x) 
3.      Diketahui f (x) = 4 - x2 , g (x) = 3-x, dan h (x) = (g o h) (x) = -3x
Tentukanlah nilai dari (f o g o h) (1)
(f o g o h) (1) =
     (g o h) (x) = 3-x
     (g o h) (x) = 3-(3-x)
     (g o h) (x) = 3-(-3x)
     (g o h) (x) = 3+3x
(f o g o h) (x) = 4 - (3+3x)2
(f o g o h) (x) = 4 - (9+ 18x + 9x2)
(f o g o h) (x) = -5 + 18x + 9x2
(f o g o h) (x) = 9x2+ 18x -5
(f o g o h) (1)
(f o g o h) (1) = 9(1)2+ 18(1) -5
(f o g o h) (1) = 9 + 18 -5
(f o g o h) (1) = 22

Berikut Ini adalah Soal dan pembahasan Fungsi Komposisi
Soal Nomor 1
Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah:

f(x) = 3x + 2
g(x) = 2 − x
Tentukan:
a) (f o g)(x)
b) (g o f)(x)
Pembahasan
Data:
f(x) = 3x + 2
g(x) = 2 − x

a) (f o g)(x)

"Masukkan g(x) nya ke f(x)"

sehingga:
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3(2 − x) + 2
= 6 − 3x + 2
= − 3x + 8

b) (g o f)(x)

"Masukkan f (x) nya ke g (x)"

sehingga:
(g o f)(x) = g ( f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x

Soal Nomor 2
Diberikan dua buah fungsi:
f(x) = 3x2 + 4x + 1
g(x) = 6x

Tentukan:
a) (f o g)(x)
b) (f o g)(2)

Pembahasan
Diketahui:
f(x) = 3x2 + 4x + 1
g(x) = 6x

a) (f o g)(x)
= 3(6x)2 + 4(6x) + 1
108x2 + 24x + 1 
= 18x2 + 24x + 1

b) (f o g)(2)

(f o g)(x) = 108x2 + 24x + 1
(f o g)(2) = 108(2)2 + 24(2) + 1
(f o g)(2) = 432 + 48 + 1 = 481
Soal Nomor 3
Diketahui f(x) = x2 + 1 dan g(x) = 2x − 3, maka (f o g)(x) = ....
A. 4x2 − 12x + 10
B. 4x2 + 12x + 10
C. 4x2 − 12x − 10
D. 4x2 + 12x − 10
E. − 4x2 + 12x + 10
(Dari soal Ebtanas Tahun 1989)

Pembahasan
f(x) = x2 + 1
g(x) = 2x − 3
(f o g)(x) =.......?

Masukkan g(x) nya ke f(x)
(f o g)(x) =(2x − 3)2 + 1
(f o g)(x) = 4x2 − 12x + 9 + 1
(f o g)(x) = 4x2 − 12x + 10

Soal Nomor 4
Diketahui fungsi f(x) = 3x − 1 dan g(x) = 2x2 + 3. Nilai dari komposisi fungsi (g o f)(1) =....
A. 7
B. 9
C. 11
D. 14
E. 17
(Dari soal UN Matematika SMA IPA - 2010 P04)

Pembahasan
Diketahui:
f(x) = 3x − 1 dan g(x) = 2x2 + 3
(g o f)(1) =.......

Masukkan f(x) nya pada g(x) kemudian isi dengan 1
(g o f)(x) = 2(3x − 1)2 + 3
(g o f)(x) = 2(9x2 − 6x + 1) + 3
(g o f)(x) = 18x2 − 12x + 2 + 3
(g o f)(x) = 18x2 − 12x + 5
(g o f)(1) = 18(1)2 − 12(1) + 5 = 11

Soal Nomor 5
Diberikan dua buah fungsi:
f(x) = 2x − 3
g(x) = x2 + 2x + 3

Jika (f o g)(a) = 33, tentukan nilai dari 5a

Pembahasan
Cari (f o g)(x) terlebih dahulu
(f o g)(x) = 2(x2 + 2x + 3) − 3
(f o g)(x) = 2x2 4x + 6 − 3
(f o g)(x) = 2x2 4x + 3
33 = 2a2 4a + 3
2a2 4a − 30 = 0
a2 + 2a − 15 = 0
Faktorkan:
(a + 5)(a − 3) = 0
a = − 5 atau a = 3
Sehingga
5a = 5(−5) = −25 atau 5a = 5(3) = 15

Bagaimana jika yang diketahui adalah rumus (f o g)(x) atau (g o f)(x) nya kemudian diminta untuk menentukan f(x) atau g(x) nya, seperti contoh berikutnya:

Soal Nomor 6
Diketahui :
(f o g)(x) = − 3x + 8
dengan
f(x) = 3x + 2
Tentukan rumus dari g(x)

Pembahasan
f(x) = 3x + 2
(f o g)(x) = f (g(x))
− 3x + 8 = 3(g(x)) + 2
− 3x + 8 − 2 = 3 g(x)
− 3x + 6 = 3 g(x)
− x + 2 = g(x)
atau
g(x) = 2 − x

Tengok lagi contoh nomor 1, dimana f(x) = 3x + 2 dan g(x) = 2 − x akan menghasilkan (f o g)(x) = − 3x + 8

Soal Nomor 7
Diberikan rumus komposisi dari dua fungsi :
(g o f)(x) = − 3x
dengan
g(x) = 2 − x
Tentukan rumus fungsi f(x)

Pembahasan
(g o f)(x) = − 3x
(g o f)(x) = g(f(x))
− 3x = 2 − (f(x))
− 3x = 2 − f(x)
f(x) = 2 + 3x
atau
f(x) = 3x + 2

Cocokkan dengan contoh nomor 6.
Soal Nomor 8
Diketahui:
g(x) = x − 2   dan,
(f o g)(x) = 3x − 1

Tentukan rumus f(x)

Pembahasan
Buat permisalan dulu:
x − 2 = a      yang pertama ini nanti untuk ruas kiri  dan,
x = a + 2     yang kedua ini untuk ruas kanan.

Dari definisi (f o g)(x)


Masukkan permisalan tadi


Soal Nomor 9
Diketahui:
g(x) = x2 + 3x + 2  dan,
(f o g)(x) = 4x2 + 12x + 13

Tentukan rumus f(x)

Pembahasan
Buat dua macam permisalan dulu seperti ini:


Dari definisi (f o g)(x)


Masukkan permisalan tadi
Soal Nomor 10
Diberikan fungsi-fungsi sebagai berikut:
f(x) = 2 + x
g(x) = x2 − 1
h(x) = 2x

Tentukan rumus dari (h o g o f)(x)

Pembahasan
Bisa dengan cara satu-satu dulu, mulai dari g bundaran f
(g o f)(x) = (2 + x)2 − 1
= x2 + 4x + 4 − 1
= x2 + 4x + 3

Masukkan hasilnya ke fungsi h(x) sehingga didapatkan
(h o g o f)(x) = 2(x2 + 4x + 3)
= 2x2 + 8x + 6

Soal Nomor 11
Diketahui fungsi f(x) = x - 4 dan g(x) = x2 - 3x + 10. Fungsi komposisi (gof)(x) =….
A. x2 - 3x + 14
B. x2 - 3x + 6
C. x2 - 11x + 28
D. x2 -11x + 30
E. x2 -11x + 38

Pembahasan
Dari soal un matematika tahun 2013, dengan cara yang sama diperoleh
Soal Nomor 12
Diketahui:
F(x) = 3x + 5
Untuk x = 2 tentukan nilai dari:
F(x + 4) + F(2x) + F(x2)

Pembahasan
x = 2, maka
F(x + 4) = F(2 + 4) = F(6) = 3(6) + 5 = 23
F(2x) = F(2⋅2) = F(4) = 3(4) + 5 = 17
F(x2) = F(22) = F(4) = 3(4) + 5 = 17

Jadi:
F(x + 4) + F(2x) + F(x2) = 23 + 17 + 17 = 57
Link Pencarian Artikel : Soal dan Pembahasan Fungsi Komposisi

Materi Fungsi Komposisi DanFungsi Invers
Contoh Soal Cerita Fungsi Komposisi
Makalah Contoh Soal Fungsi Komposisi
Contoh Soal Fungsi Kelas 10
Contoh Soal Fungsi Komposisi Dalam Kehidupan Sehari-Hari
Contoh Soal Fungsi Kelas 8
Contoh Soal Fungsi Dan Relasi
Contoh Soal Dan Pembahasan Relasi Dan Fungsi Kelas 10

Demikian Pembahasan Soal Mengenai Fungsi Komposisi yang dapat kami bagikan, semoga bermanfaat. Terimakasih

Click to comment